Getting Started

ecean

Creating advantage

Ocean Software Development Framework for Techlog
Version 2016

Schlumberger

Copyright © 2006-2016 Schlumberger. All rights reserved.

This work contains the confidential and proprietary trade secrets of Schlumberger and
may not be copied or stored in an information retrieval system, transferred, used,
distributed, translated or retransmitted in any form or by any means, electronic or
mechanical, in whole or in part, without the express written permission of the copyright
owner.

Trademarks & Service Marks

Schlumberger, the Schlumberger logotype, and other words or symbols used to identify
the products and services described herein are either trademarks, trade names or
service marks of Schlumberger and its licensors, or are the property of their respective
owners. These marks may not be copied, imitated or used, in whole or in part, without
the express prior written permission of Schlumberger. In addition, covers, page
headers, custom graphics, icons, and other design elements may be service marks,
trademarks, and/or trade dress of Schlumberger, and may not be copied, imitated, or
used, in whole or in part, without the express prior written permission of
Schlumberger. Other company, product, and service names are the properties of their
respective owners.

An asterisk (*) is used throughout this document to designate a mark of Schlumberger.

Schlumberger Private - Customer Use

Schlumberger Private - Customer Use

Contents

Welcome to Ocean for TECIIOGcoveeeiiieie e 3
Ocean for Techlog AdVantageccoooiiiiiii e 3
Ocean for Techlog ArChitECEUrE........iiiiii e e 4
Access to the Techlog data MOdel..........ciiiiiiiiiiiiiii 4
Ocean for Techlog UL INfrastrUCTUIEcoeeeeeie e 5
Ocean for Techlog plug-in identity and actiVitiesccuuiiiiiiiinic e 6
Ocean frameWOrK ICENSEcooeiiie e 7
L0] =] I o To ol PSPPI 7

Install and setup the Ocean for Techlog development environment..........coooeeeeeiieeeeeeeeeeeeeeeeeee, 9
Ocean for Techlog iNStallation..........coeeuuiiiiii 9
Ocean for Techlog package CONLENEuuuiiiiiiiiii e aaa 12
Ocean for Techlog environment variables ..., 13
Test the Ocean for Techlog development enVIrONMENTc.uiiiiiiiiiiiiiiin e 14

LA Lo IR 10 T 1= o o] (0T o N 19
WHEING the PIUG-IN ...t e s 19

Creating the Plug-in and Activity with Visual Studio..........ccuuviiiiiiiiiiiii e, 19
INSPECiNG the ISiiiiii i e eaaan 22
] 8T 1 o PPN 23
ACHIVIEY 2. vveveere s tetess s sesestess s s esbebess s sestebessss s st et ebese s sestebese s et et ebessasataberessseasetebenis 27
Writing the algorithm COAEuiiiiii e 27
RUNNING The PIUG-IN covueiiii e e e e e e e aaa s 30
DEbUQG the PIUG-iN ceeeeeeiie e e 32
Techlog Viewer plug-in development (Schlumberger Internal only)ccocvvevviiiiiniiiiiiennns 34
Techlog VIEWET SPECIFIC ..evvvieiiieiiieieieieee ettt ettt e e e e 34
SIGNEA PIUGINS .. ceerrruieiiieieiireiiis e s e e re s e s s s e e e s s e s e s e ree s s e e s e s s eennnnnnseeaeaneenns 34
Create unit tests for YOUr PIUG-iNccuuueiiiiiciiri e s 34
Creating a Test plug-in with Visual Studio..........cooooriiiiiii e 35
INSPECtiNg The fIlES ... 36
IMplement the tESES. ..o e 37
RUN the BESES ..ttt ssssnsnsnsnnnsnsnnnsnnnsnnnnnnn 42
Contents

Schlumberger Private - Customer Use

1

2

Create an installer for your PlUug-iN.........uoiiiiiiii i e eaaan
Deploy folders and files with the plug-in dllcooumiiiiiiiic e
User folder versus company folder deployment..........uuueeiiiiiiiieiiiisin s e eeeens

Upgrade existing Ocean plug-in t0 2016.1ciiiiiiiiiiiiiiii e e ra s

Getting Started
Schlumberger Private - Customer Use

Welcome to Ocean for Techlog

Ocean for Techlog is an application development framework, part of the Ocean suite of
Schlumberger software platform SDKs, focused on wellbore data processing and
visualization. It allows the application developers to extend the functionality and
workflows of the Techlog platform.

The Ocean framework provides a productive development environment that allows the
developers to focus on science.

Ocean plug-ins are loaded on-demand by the Techlog end-user as libraries (dll) using
the Techlog module manager.

A plug-in integrates in Techlog the menus and workflows like native modules. They
may appear as:

e activities started for instance through a menu item, which decide by themselves
when they are finished. They are displayed as tasks in Techlog, such that you
can monitor and possibly stop them manually.

e activities as worksteps which run within a Techlog workflow.

YAl the code snippets in this document have been built with Ocean for Techlog
2016.1.

Ocean for Techlog Advantage

Ocean is built in the Qt (cute) environment. Qt is a cross-platform application
framework that is widely used for developing application software with a graphical user
interface. Qt uses standard C++ but makes extensive use of a special code generator
(called the Meta Object Compiler, or moc) together with several macros to enrich the
language. For software developers, the use of Qt is seen as a productivity
enhancement.

Ocean is designed to promote code reusability for maintenance efficiency and
robustness. The Ocean Framework enables independent development of decoupled
modules. These modules can then be deployed independently of the main Techlog
application. This enhances robustness while preserving the evolution of the Techlog
platform.

Ocean also promotes the independence of data display and data access. Traditional
applications produce data and provide sophisticated rendering and interactions for this
data. This isolates them from other applications. In Ocean, data access and data
display are not handled by the same classes. This promotes code reuse and data
sharing in the same graphical environment. For instance, the Logview window
simultaneously shows data processed by Petrophysics, Acoustics, and Geology
modules. It becomes an essential tool for asset team collaboration.

Getting Started 3
Schlumberger Private - Customer Use

Ocean for Techlog Architecture

Ocean for Techlog provides lifecycle management, a runtime environment, and a public
API for plugins to interoperate with Techlog functionalities. Figure 1 shows how Ocean
for Techlog provides the glue between Techlog and the plugins.

)
o NS Ocean ocean /

Services AP Plug-ins

RPC connection

Techlog host process Plug-in host process

Figure 1 Ocean for Techlog architecture. Plug-in isolation.

The Ocean for Techlog architecture is based on native C++ and the Qt framework, with
plug-ins running outside of the main Techlog process. Each plug-in running in its own
process provides stability and compatibility as it:

e allows plug-ins to run in debug mode with the release version of Techlog
e avoids conflicts between third-party libraries used by the different plug-ins

¢ allows debugging, fixing, recompile and rerun of a plug-in without having to
restart Techlog

e allows binary compatibility over multiple versions of Techlog and Qt
e allows isolation of Techlog in case of a crash of one plug-in

The Ocean for Techlog public API (Slb.Ocean.Techlog.dll) is the host for Ocean
applications and is the environment in which the Ocean module needs to run. The
public API provides:

o the domain objects and their data source
e the graphical environment in which the applications will display their data

¢ a common look and feel for all application user interface components

Access to the Techlog data model

The Ocean for Techlog API can access the following data types and properties of the
Techlog data model:

o Well

e Dataset

e Variable (Well logs)
o Data properties

e Zonation

4 Getting Started
Schlumberger Private - Customer Use

Ocean for Techlog UI Infrastructure

The Ocean for Techlog API does not limit itself to accessing the Data domain of
Techlog. It also provides a rich environment for integrating the Ocean module with the
graphic environment familiar to Techlog users.

The User Interface API provides functionality to customize many elements of the
Techlog window system.

graphics
in every
plots

custom
widget

000000: ==

Figure 2 Techlog UI extensibility

Ocean provides the capability to extend Techlog’s user interface functionality for the
GUI to be tailored to the needs of new applications. The example provided in Figure 2
shows some examples of what is customizable with the Ocean API:

e Menu bar extensions:

o Adding new tabs, groups and menus to the tbar (Techlog ribbon) or
extending native Techlog menus

e Windows:

o Adding custom windows (Qt widgets) in Techlog workspace
e Plots:

o Adding custom plots

o Customize native and custom plots adding graphic items

o Add user interactions through graphic items

o Extend menu bar, tool bar and context menu of native and custom plots
with custom tools

e Workflow manager
o Add custom user interface to an Ocean workstep

o Extend worktep properties (Techlog properties editor) with custom
properties tab

Getting Started 5
Schlumberger Private - Customer Use

Ocean for Techlog plug-in identity and activities

6

Getting Started

The PluginIdentity is an interface that the developer has to implement to declare

some information about the plug-in, its list of activities, and the menu items used to
trigger those activities.

This is the main entry point class of the plug-in and this class, compiled into the library,
provides identity and support information on the plug-in.

Once the plug-in library is deployed into the Extensions folder of Techlog (could be in
the Techlog, Company or User folder), the end-user can enable or disable it in the
Techlog module manager accessible through the Project > Licensing > Module
Manager menu.

Select your license configuration
Techlog Modules
4[] Ocean plug-ins
Ocean
Framewark] ﬂ HelloWorld
(/1) [C1 8] myriugin

a |:| Ocean for Techlog .Met example plugin

7] TestRunnerPlugin
.& Default ' [7] TestRunnerPlugin

Cancel

Figure 3 Techlog module manager

The module manager in Techlog manages the integration of the plugin activities into
Techlog: it loads and queries the plugin, creates actions that can launch the plugin
activities, and links them to menu items in Techlog.

In Techlog, a module is a set of functionalities associated to a license feature. A plugin
can contribute its Activities into some Techlog Modules. For instance, a Plugin can
contribute an environmental correction workstep (associated to the environmental
correction license), and can also add some geology-related processing to the WBI
(wellbore imaging) module, that is to say available only if the user has also a WBI
license. This means that the integration into the Techlog menus is dynamic, based on
the Techlog modules enabled by the user, and therefore subject to license checks.

Schlumberger Private - Customer Use

% Native Techlog Module

¥ Native functionality

Native functionality

«

Native functionality

Plugin

\ |z Activi
____________—————,‘ Ll license feature A

| liconce fenkurce B

Figure 4 Plugins contribute activities to modules (native or custom). Modules can
be licensed.

All the activities of a given plugin run in a single process, and multiple instances of a
given activity can run in that same process. This way, activities within a given plugin
can communicate between each other (for instance, multiple worksteps forming a
workflow).

Ocean framework license

Ocean for Techlog is sold under a license feature called Ocean_Framework that
makes tiBase, tIAdvancedPlotting and tIPython modules available.

Ocean_Framework license feature gives access to Ocean for Petrel and Ocean for
Studio development frameworks as well. You need to provide a dongle id when you
order the license through the Ocean store.

Creating or opening a Techlog project with an Ocean framework license marks the
project as tainted.

e Plots and reports accessing data from a tainted project have a watermark.
e Data export is prohibited.

e Once the project is tainted it can't be open with a regular Techlog license.

Qt LGPL notice

Ocean framework is distributed with Qt LGPL 5.4.2 libraries. Per requirement of LGPL
components used, you must provide with your plug-in a notice that LGPL code is being
used. This can be done by deploying with your plug-in dll (plug-in folder) README.txt
and LGPL.txt files shipped with the Ocean framework.

Getting Started 7
Schlumberger Private - Customer Use

3rdparty
bin
buildtools
Documentation
examples
include
lib
techlog
Visual Studio Extensions
win32
«. demo-project.zipx
GettingStartedWithOceanForTechlog,pdf
| LGPLbdt
@ OceanForTechlog.chm
| QceanForTechlog.chw
| README.tut

Figure 5 LGPL notice files

See the “Deploy folders and files with the plug-in dll” section for more information on
how to deploy additional files in the plug-in folder.

Open and modify the README.txt files before deploying it with your plug-in changing
the “Ocean for Techlog Software” with the name of the plug-in at the beginning of the
file.

8 Getting Started
Schlumberger Private - Customer Use

Install and setup the Ocean for Techlog development environment

Ocean for Techlog installation
Ocean development environment is setup by Ocean for Techlog installer.

The installer first checks if the Techlog version corresponding to the Ocean Framework
is installed on the user machine. The Ocean for Techlog package can be located
anywhere on the disk.

1. Browse the installation folder and click Next in the dialog window. (See Figure
6.)

ocean ©

Creating advantage

Ocean for Techlog 2016.1 Alpha 1

Install To

CA\Program Files\Schlumberger\COcean for Techlog 2016.1. !

You must agree to the license terms before you can install the
product.

[¥] I accept the terms in the License Agresment

Figure 6 Ocean for Techlog install location

The installer checks:
e corresponding Techlog version is installed
e Visual Studio 2012, 2013 or 2015 is installed
2. Click Next in the dialog window. (See Figure 7.)

Getting Started 9
Schlumberger Private - Customer Use

oceaqan @ "

(NCE R G

Ocean for Techlog 2016.1 Alpha 1

Prerequisite Check

Checking installed Visual Studic 2012, 2013 or 2015 o vy

Checking installed Techlog 2016.1 Alpha 1 OV

Figure 7 Techlog and VS 2012, 2013 or 2015 installed

If you have already a Techlog user folder defined on your system (TLUSERDIR
environment variable), sample plug-ins are deployed to this folder. Otherwise the
installer deploys sample plug-ins to user profile’s AppData in order to avoid any UAC
(User Account Control) issues.

Note: If you have already a QTDIR environment variable defined on your system
and pointing on Qt version installed on your machine, the value of this
environment variable is replaced by the path to Qt folder deployed with
Ocean for Techlog package.

See the “Ocean for Techlog environment variables” section for more information on
how to setup Ocean environment variables.
The installer shows Visual Studio components installed with Ocean.

3. Select all components and click Install in the dialog window. (See Figure 8.)

10 Getting Started
Schlumberger Private - Customer Use

oceaqan @ "

(NCE R G

Ocean for Techlog 2016.1 Alpha 1

Optional components

B ©cean for Techlog

B Ocean Start Page

B ©Ocean Quality Assistant

[Projects and ftems Templates
[Techlog Headers Resaolver

] Techlog Test Adapter

[visual Studic F1 Help

Install

Figure 8 Visual Studio components

4. Reboot is required to get all Ocean for Techlog Visual Studio extensions
properly installed. (See Figure 9.)

oceqn @

Creating advantage

COcean for Techlog 2016.1 Alpha 1

Setup successful

All specified components have been installed, Reboot is required
to complete cperation. If you continue without rebooting, some
features might not work as expected.

Figure 9 Reboot required

Getting Started
Schlumberger Private - Customer Use

11

Ocean for Techlog package content

Ocean for Techlog Framework is deployed by the installer. The Ocean for Techlog
package will have the following folders tree installed on your disk when installed:

4 Srdparty
Google.Test——> Google tests 1.6.0 vsc2013 librairies and header files
Qt ———> Qt 5.3.2 (Digia) libraries and header files
bin

buildtosls ———> Natvis debug file for Ocean domain objects

Documentation
4 examples
DotMetExample
GenericFileStorage
HelloWorld
MyPlugin

Plug-in examples folder

include
lib
4 techlog

:l-— Techlog SDK runtime libraries and header files

} Techlog user folder

Visual Studio Extensions
win32

Extensions

(% OceanForTechlog.com — > APl documentation CHM file

Figure 10 Ocean for Techlog package content

Plug-ins are built on Qt. The Ocean for Techlog Framework installer comes with the
LGPL 5.4.2 version of Qt and QtCore and QtGui libraries (the 2 most basic Qt libraries).

The Ocean for Techlog API exposes the following objects:

e Base classes: QObject (plug-in classes are QObject and in particular they
expose their event handlers as Qt’s slots methods), QWidget (a simple way of
providing a custom GUI is by implementing a QWidget)

e Basic types: QString, QVariant, QImage, QColor, etc.
e Containers: QList, QMap, QHash, etc.
e Enums: Qt::PenStyle, etc.

Google tests 1.6.0 mvsc2013 x64 librairies are provided with Ocean framework in order
to create Ocean test plug-in. See the “Create unit tests for your plug-in” section for
more information on how to create Google tests for an Ocean plug-in.

All libraries needed to develop plug-ins with the Ocean for Techlog framework are
shipped with the installer and are installed under the 3rdparty folder.

The examples folder includes the following plug-ins:

e HelloWorld: a simple plug-in useful to test your Ocean for Techlog
development environment.

o DotNetExample: showing how to integrate a .NET library in Techlog using Qt
and Ocean framework.

12 Getting Started
Schlumberger Private - Customer Use

¢ MyPlugin: some code examples of each API exposed in Ocean for Techlog
o Read and write data access
o Creating workstep, add it and run it in a Techlog workflow
o Plot examples as Logview, cross-plots, custom plots
o Custom UI examples

¢ GenericFileStorage: some plug-in domain objects (custom domain objects)
code samples

The Extensions folder contains the compiled plug-in examples listed previously and
can be used as deployment folder during the development phase of your plug-ins. For
that you need to create or modify the TLUSERDIR environment variable to point the
User folder to the parent of the Extensions folder of the package. This is described in
the next section.

The same known Extensions location can be added within Techlog’s multi-level folder
organization: Techlog, Company and User. This allows the plugin to be deployed
along with the Techlog installation, or on the Company’s shared drive to reach many
users, or just by an individual.

1t is not recommended for a plug-in developer to deploy a plug-in directly at the
company or Techlog level for the following reasons:

e content of the Company folder is usually handled by a dedicated team within the
company

e Techlog extensions folder hosts plug-ins deployed with the Techlog baseline as
native Techlog modules

Ocean for Techlog environment variables

In order to build your plug-ins the Ocean installer sets at least two environment
variables which are:

o TechlogSDKHome is the root folder path where the Ocean for Techlog
framework is installer on your disk (e.g. D:|OceanforTechlog|SDK).

e QTDIR used to build plug-in with Qt libraries. If you use the Qt libraries shipped
with the package in the third-party folder, the path can be set as follows
% TechlogSDKHome % |3rdParty | Qt

To see in the Techlog module manager the demo plug-ins installed with the Ocean
package, an additional parameter is needed which is the user folder where are
deployed the plug-ins.

If there is no user folder sets on your machine, the installer sets the
%AppData® \Schlumberger\Ocean for Techlog 2016.1\techlog folder as
user folder and deploy sample plug-ins in this folder. Sample plug-ins code is also
deployed in the ©%AppData% \Schlumberger\Ocean for Techlog
2016.1\examples

You can change it anytime through Techlog Options window (Project > Options).

Getting Started 13
Schlumberger Private - Customer Use

o

Techlog folder }\Software\Techlog\Techlog 2016.1\Techlog 2016.1 Alphal (r159622) |

‘ Style Company folder | '| 0 m E—

[7] Custemized trash folder |

[T] Default impaort project sub-folder: |Data"-.Impc:|‘t

[7] Default export project sub-folder: | Data‘\Export

Cih\Techlog-Projects
0 Language
Projects storage folders: 0 @ m E—
Folders
ﬁ Parameters
i Memory
Temnplate projects folders: o @ m r
User folder: fata\RUaming\SchIumberger\Ocean for Techlog 2016.1\techlog |Ir
Temporary folder: | Ch\Users\Iguenowd\ AppDatatLocal\ Temp T
Empty the trash

[T] Ernpty trash when closing project

Permanent removal of all objects in the trash: | Empty trash

OK | | Cancel

Figure 11 Techlog user folder

This parameter is set through the TLUSERDIR environment variable as below:

e TLUSERDIR =%7T7echlogSDKHome % |techlog if you want to use to use the
User folder as your target build area.

= Close and re-open any explorer window to propagate the new environment var-
lable settings.

Test the Ocean for Techlog development environment

First we want to test if the TechlogSDKHome is properly set up and the Techlog user
folder is pointing on the Extensions folder of the Ocean for Techlog development
package. Perform the following steps:

1. Run Techlog and open the module manager from the Project > Licensing menu:

14 Getting Started
Schlumberger Private - Customer Use

Select your license configuration
Techlog Modules
4[] Ocean plug-ins
[F Helloworld
|:| ;@ MyPlugin

|:| Ocean for Techlog .Met example plugin

Ocean
Framewark

|:| TestRunnerPlugin
1 Default [] TestRunnerPlugin

Cancel |

Figure 12 Release plug-ins deployed with Ocean Framework

The module manager scans the Extensions folder of the Ocean for Techlog package
and the three example plug-ins built in release mode and shipped with the Ocean
framework displayed as in Figure 11.

2. Go to 9% TechlogSDKHome% \examples\HelloWorld folder and run
qmakepluginhelloworld.bat to create the visual studio project file.

3. Open HelloWorld.vcxproj with Visual and build the project in debug x64 mode.

Helloworld - Microsoft Visual Studio (Administrator) =]]

Fie Edit View VAssst{ Project Buld Debug Team Data Tools Architecture Test Ocean Analyze Window Help

= N N T j\q-u-\-;d-:ﬂbﬁehug -uxﬁ'i -lm\egwewuad«mmsemn B s o e 3

Dl P al et %n W

Solution Explorer -~ x
alsa]
g Solution HelloW/orld" {1 project)
BT iciovora
(g External Dependendies
3 Generated Files
B [Headers
[n] HelloWorld_precompiled.h
[n] HelloWorldActivity.h
[n] HelloWorldPlugin.h
St aput o sl EFIEEIELE S oterie

LUUSLUINDULLUT = B [Sources
1> MOC include\HelloWorldActivity.h...

1>ClCompile:

1> Hellokorld_precompiled.h
1> HellokorldPlugin.cpp

1> HellokorldActivity.cpp

1> moc_Helloworldactivity.cpp
1> Generating Code...

I>link: Properties

€+ HelloWorldActivity.cpp
€+ HelloWorldPlugin.cpp
(24 OceanForTechlog.rc

LRy W Team Explorer B2 Cla:

1> Creating library D:\CceanForTechlog\SDK\TechlogSDK_r118949\examples\Hellohorlc
1> Hellolorld.vcxproj -> D:\OceanforTechlog\SDK\TechlogSDK_r118949\examples\Hellokor

HelloWorld Project Properties

1>FinalizeBuildStatus: =M =

1> Deleting file *D:\OceanForTechlog\SDK\TechlogSDK_r118949\examples\Hellokorld\TL_t =

1> Touching "D:\OceanForTechlog\SDK'\TachlogSDK_rll18949\examplasiHelloworld\TL_build' {Name) Hellowarld

1> Project Dependendies

1>Build succesded. Froject File D:\OceanForTechlog\SDK TechlogSDK
Root Namespace tsdkhelloworld

1>Time Elapsed 2@:00:10.71
========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ====

(Nlame)
Specifies the project name.

Getting Started 15

Schlumberger Private - Customer Use

16

Getting Started

Figure 13 HelloWorld build in debug x64

The project must build successfully and a new debug x64 library of the Helloworld
project is generated in Extensions user folder.

Note: In the following screenshot you can see that the expected plug-in structure
folder is VendorName/PluginName/TechlogVersion/PluginVersion/.
If this structure folder is not respected the plug-in is not loaded in Techlog.

@u-v| « SDK » 151 » techlog » Extensions » Schlumberger » HelloWorld » 20151 » 1.0

File Edit View Tools Help

Organize » Include in library « Share with + Burn Mew folder

r
40151 “ Name Date mo

3rd i
bf party HelloWeorld54D.4ll
n

1l HelloWorld64D . exp

buildtools 5)
] HelloWorld64D.idb 3/201
examples
include i .
b % HelloWorld64D.lib /13/201
I
3/201

& hellowarldsdd.pdb
tsdkhelloworld64.dIl
& tsdkhelloworld6d.pdb 3/12/201

3
2] HelloWorld64D.ilk 3/13/201
4 techlog :
e Extensions .
4 Schlumberger
DotMetExample
4 HelloWorld
4 [20151

10

m

Figure 14 HelloWorld debug x64 library

4. In Techlog open the module manager, right-click on Ocean plug-ins node and click
on Refresh plug-ins item in the context menu. The new HelloWorld debug
x64 plug-in appears in ocean plug-ins group as in Figure 15.

Schlumberger Private - Customer Use

-
Techlog 2016 - License selection I Lé]]

Select your license configuration

Techlog Modules

4[] Ocean plug-ins

Fra?r:::vr;rk [& Hellowaorld
o
e ~mata 3 paew orofila 18 myFlugin
——— |:| Ocean for Techlog \Met example plugin
&' Default __] [@ oceanPluginTestt

[TestRunnerPlugin
[TestRunnerPlugin

| Start | | Cancel

Figure 15 HelloWorld64D plug-in

= If you get the error messages below for some plug-ins built in debug mode when
you refresh the list of plug-ins in the module manager it means that Techlog plug-in
debug host process executable and its dependencies have not been deployed properly
in bin64/pluginhost folder of Techlog installation folder. Please re-install Ocean
package.
Error: Plugin 'myplugin64D.dll': can't find corresponding plugin host file.
Error: Can't launch plugin host for plugin 'myplugin64D.dll": host process not
running.

5. Enable the plug-in and click on the Hello World action menu in the new HelloWorld
plug-in added in Techlog. Hello Plugin World message displays in the Techlog
output console.

Getting Started 17
Schlumberger Private - Customer Use

18

Getting Started

© Hello World

HelloWorld

Project browser s 8 ox

> & we3

Output

[Project browser | Workspace

Zonation s 8 x [} [2016-02-2317:33] Hello Plugin World!
Zonation:

Zonation | Properties | Markers | Contacts | Palettes

6 rvE

Figure 16 HelloWorld64D activity running

Please review the user folder path in Techlog (or TLUSERDIR), TechlogSDKHome,
and QTDIR environment variables if one of these steps does not work properly.

= One of the reasons listed below can be the root of your issue:

e If QTDIR is not set correctly, gmake will not create the solution.

o Ifthe plug-in dll isn’t generated in TLUSERDIR, the built plugin will not be
loaded.

o Ifthe plug-in folder structure Vendor-
Name/PluginName/TechlogVersion/PluginVersion/ isnt respected the
plug-in will not be loaded.

e Ifa Debug version plug-gin is not loaded, the Debug version of the pluginhost is
not present in bin64/pluginhost folder of Techlog installation folder.

Schlumberger Private - Customer Use

Writing your first plug-in

The Ocean for Techlog framework provides a development and runtime environment
for wellbore centric data manipulation, interpretation, and visualization applications.
You have the ability to create workflows that interoperate with or extend the com-
mercial Techlog Interactive Suite and the capability to extend the scope of Techlog to
address new petrotechnical domains. This chapter describes the procedure of creating
a simple plug-in.

Writing the plug-in

In your first plug-in you will add a new menu item into a new tab and group in Techlog.
Clicking on this menu item will trigger an activity that prints all the well, dataset and
variable names found in the current project.

There are three main steps for creating your first plug-in. Each step will be detailed in
the sections that follow. The steps are:

1. Run the Ocean for Techlog Plug-in Wizard in Visual Studio to create the
plug-in.
Inspect the files created by the Wizard.
3. Modify the code to add the processing logic.

N

Creating the Plug-in and Activity with Visual Studio
To create the project, plugin, and activity using Visual Studio:

1. Start Visual Studio.

2. Create a new project by selecting File > New Project.

3. In the Project types area, under Visual C++ project type, select Ocean >
Techlog 2016.1.

Note: Since Ocean 2016.1, you can have two different versions installed on
the user machine, a 2015.1 and a 2016.1.

4. Select the Ocean Plug-in template.
5. Provide the name “MyFirstPlugin” for the project.
6. Click OK to start the Wizard.

Getting Started 19
Schlumberger Private - Customer Use

20

Getting Started

B =)

-
New Project

b Recent |.NI-_—I' Framewaork 4.5 -‘ Sort by: | Default ~| % |#=|| SearchInstalled Templates (C O ~
4 Installed o . Vi
Ocean Plug-in Visual C++ Type: Visual C++
-
4 Templates _ Ocean Plug-in Wizard 16.1
P Visual Basic Ocean Plug-in Installe) Visual C++
b Visual C&

4 Visual C++ gl Cat

Ocean Test Plug-in
b Store Apps
ATL
CLR
General
MFC
Test
Win32
4 Ocean
Techleg 2015
Techlog 2016.1

Ocean Plug-in template

Ocean Project type

- Project name
ck here to go online and find templates.

MName: |MyF\rstPIugin K |

| D:\OceanForTechlog\SDKVL6 1examples v|

Create directory for solution
[[] Add to source control

o

P Online

Location:

Solution name: MyFirstPlugin

Figure 17 New project window

It is generally a good practice to use a descriptive plug-in name.
7. Change the name of your plug-in to “MyFirstPlugin”.
8. Change the “Vendor name”, “Plug-in version”, “*Support e-mail”, “Crash dump
e-mail” and “Description” fields as appropriate (See Figure 18.).
Note that “Vendor name”, “Plug-in name” and “Plug-in version” are mandatory
plug-in information.
9. Click Finish.

r ™
+ MNew Techlog Project =

Ocean Plug-in Create

Please set the op f your new plug-in.

Class: My FirstPlugin

Vendor name: Schlumberger

jemith @slb.com
Crash dump e-mail: smith@slb.com

Support e-mail:

Description: This is my first plug-n

Version: 1.0

Cancel | [FEiish <

Schlumberger Private - Customer Use

Figure 18 Plug-in wizard

The wizard creates the project with the main plug-in class.

10. Add a new plug-in activity by right-clicking on the project in the Solution Ex-
plorer and selecting Add > New Item in the contextual menu.

11. In the Item types area, under Visual C++ item type, select Ocean >
Techlog 2016.1.

12. Select the Ocean Activity template.

13. Provide the name “ReadDataActivity” for the activity.

14. Click Add in the dialog (See Figure 19.)

Add New Item - MyFirstPlugin [

4 Installed Sort by:|DefauIt ~| & 1= Search Installed Templates (Ctrl+E) P-

4 Visual C++
U1
Code
HLSL
Data
Resource
Web

Type: Visual C++
Ocean Activity Wizard 16.1

Ocean Activity template

Utility
Property Sheets
4 Ocean
Ocean Item type
Techlog 2015 / YD
Techlog 20161
Test
Graphics -
F Activity name
b Online
Click here to go online and find templates.
Mame: ReadDataActivity
Location: |D:\OceanFDrTechIDg\SDK\lG_l\exampIes\M)rF\rstPIugin\M)rFirstPIugin\ '| Browse... |

Add Cancel |

Figure 19 New activity window

Note: From this window you have the ability to create an Ocean Workstep
Activity. This will add to the project an activity class that instantiates a
Workstep in the Techlog Application Workflow Interface with its signals and
slots. See the “Workfow and worksteps” section in Ocean Basics developer
guide for more information on how to implement an Ocean workstep.

15. Change the “Tab title”, “Group title”, “Action menu text” and “Action menu
tooltip” fields as appropriate (See Figure 20.).
Note that those fields are used to create the plug-in menu in Techlog toolbar
that triggers the Ocean activity.

16. Click Finish.

Getting Started 21
Schlumberger Private - Customer Use

Inspecting the files

22 Getting Started

i B
., New Activity Item ESEE ™

Create Ocean Activity Ttem

Please set the options of your Activity Ttem.

Tab title: Ity first plug-in
Group title: Ity first group
Action menu tesdt: Fead data

Action menu tooltip: Read data

Cancel || Finish <

Figure 20 New activity wizard

The wizard adds the activity class to the project.

5N If Intellisense is disabled in Visual Studio 2013, Ocean template items are not
accessible and an error message is raised. In Tools > Options menu of Visual Studio
2013, Disable database has to be turned off.

r ~ M
— (9
Search Options (Ctrl+E) p Complete Multiline Comments True o
4 Text Editor - T
General E
File Extension P . . o =
b All Languages Disable Database Auto Updates False
b Basic L Disable Implicit Files Falze —
p C# r Disable Implicit Cleanup False
4 CfC++ Disable External Dependencies i False
General | 3 Recreate Database False
Scroll Bars Rescan Selution Interval 60
Tabs Disable Mavigate To Cache Prelo False
Advan?d 4 Diagnostic Logging
4 F.ormattmg Enable Logging False
View Logging Level 5 il
I CoffeeScript
b C55 Disable Database
b F# Disable all use of the code browsing database. The database will not be cpened or
B HTML created.
[QK] [Cancel
Figure 21 Disable database

The Ocean for Techlog Wizard creates a solution named “MyFirstPlugin” with a project
named “MyFirstPlugin” in the Visual Studio Solution Explorer. The project will contain
header and source file for the Plugin class that was created, and the Activity class (See
Figure 22).

Schlumberger Private - Customer Use

Plugin

Solution Explorer * B X

I
I
4

@ o-ea@|l =4
Search Selution Explorer (Ctrl+5) 2 -
fa] Solution 'MyFirstPlugin' (1 project)

4 [MyFirstPlugin (Visual Studio 2010)

r5 External Dependencies

hi

hi

B

B

™

™

[+
[

1 OceanForTechlog.re

Generated Files
Headers
MyfFirstPlugin_Pluginh €|
MyFirstPlugin_precompiled.h
ReadDatafctivity.h

Other Files

Sources

++ MyFirstPlugin_Plugin.cpp €=
++ ReadDataActivity.cpp €

-~

/

Plugin header

Activity header

Plugin source

Activity source

Figure 22 Example project header and source files in Solution Explorer

The main plug-in class derives from PluginIdentity interface class.

PluginIdentity class is derived from IPlugin class (plug-in interface) that

exposes the following virtual methods:

class IPlugin

{

public:
virtual void getInformation (PluginInformation
&pluginInformation) const = 0;

virtual void getActivities (PluginActivities
&activities) const = 0;

virtual void getMenu (PluginMenu &menu)

b

Implement the plug-in identity interface to declare:

const

Information about the plug-in (getInformation)
A list of activities (getActivities)

Menu items used to trigger those activities (getMenu)

#pragma once
#include "tsdkpluginidentity.h"

using namespace Slb::Ocean::Techlog;

Schlumberger Private - Customer Use

= 0g

Getting Started

23

class MyFirstPlugin : public PluginIdentity

{
Q_OBJECT
Q_PLUGIN_METADATA(IID TSDK_PLUGIN_INTERFACE_ID)
public:
virtual void getInformation(PluginInformation& pluginInformation)
const override;
virtual void getActivities(PluginActivities& activities)
const override;
virtual void getMenu(PluginMenu& menu) const override;
}s

These three methods must be implemented in the source file that first includes the
plugin and activity header files and S1b: :Ocean: : Techlog namespace at the be-
ginning of MyFirstPlugin.cpp file.

#include "tsdkplugininformation.h"
#include "tsdkpluginactivities.h"
#include "tsdkpluginmenu.h"
#include "tsdkpluginmenutab.h"
#include "tsdkpluginmenuaction.h"
#include "tsdkpluginmenugroup.h"
#include "MyFirstPlugin.h"

// Please include here your activity header files
#include "ReadDataActivity.h"

// #include "Activity.h"
JXFFFFACTIVITIES*INCLUDE***** /

using namespace Slb::0Ocean::Techlog;

The getInformation method contains properties which provide information to the
plugin. These include Vendor name, Plug-in name, Plugin version, Description,
Release date, Plug-in icon, Creator, Support email, Crash dump email,
Plug-in license feature and Techlog license features dependency. The con-
tents of getInformation should look something like:

void MyFirstPlugin::getInformation(PluginInformation& pluginInformation)
const

{
pluginInformation.setVendorName (PLUGIN_VENDOR_NAME);
pluginInformation.setName(PLUGIN_NAME);
pluginInformation.setVersion(PLUGIN_VERSION);
pluginInformation.setDescription("This is my first plug-in");
pluginInformation.setReleaseDate("03/12/2015");
pluginInformation.setIcon(QIcon("ocean.png"));

24 Getting Started
Schlumberger Private - Customer Use

pluginInformation.setCreator(PLUGIN_VENDOR_NAME);
pluginInformation.setSupportEmail ("jsmith@slb.com");

pluginInformation.setCrashDumpEmail("jsmith@slb.com");

PLUGIN_VENDOR_NAME, PLUGIN_NAME and PLUGIN_VERSION Visual Studio prop-
erties can be changed through “Ocean for Techlog” tab in project properties.

| GettingStarted Property Pages - l PR 1
Configuration: ’Acti\.re(Debug) VI Platform: ’Active(xﬁél) v] ’ Configuration Manager...]
I Commeon Properties 4 Compilation settings
4 Configuration Properties MO settings -DOT_NO_DEBUG -D_WINDOWS -DUNICODE -DQT |
General 4 Plug-in settings
Plug-in project name MyFirstPlugin
Debugging Plug-in versicn 1.0
VC++ Directories VendorMame Schlumberger
b C_-’rCJ'J' 4 Version
b Llnkgr TechlogSDKHeme D:\OceanForTechlog\SDK\16_1\
P LU W] QtDir D:\OceanForTechlog\SDK\16_1\3rdparty\Qt
b XML Document Generator TLUSERDIR D:AOceanForTechlog\SDK\16_1\techlog
I» Browse Information -
b Build Events Techlog version 2016.1
b Custom Build Step
I Code Analysis Plug-in project name
The name of the plug-ins project
]] b
[oK] [Cancel Apply
Figure 23 Plug-in settings
Note: vendorName, name and version property values of PluginInformation

class have to match the plug-in structure folder names
VendorName/PluginName/TechlogVersion/PluginVersion/. If this
structure folder is not respected the plug-in is not loaded by the Techlog
module manager.

In getActivities method ReadDataActivity is added to the plug-in activity. The

wizard

had declared for this activity a unique id (GUID) and ReadDataActivity is

identified as unique by its GUID in the list of activities of the plug-in.

static QString
ReadDataActivityId(QLatinlString("f1007fle-1ce3-477e-ad47f-d91f4e7elb7b

"))

void MyFirstPlugin::getActivities(PluginActivities& activities) const

{

// Please fill this method with your activities with lines like this

activities.add(TSDK_ACTIVITY(ReadDataActivity, ReadDataActivityId));
// activities.add(TSDK_ACTIVITY(Activity, actionId));
J¥FFFFACTIVITIES*REGISTRATION*PLACE***** /

Getting Started 25
Schlumberger Private - Customer Use

26

Getting Started

The wizard implements the getMenu method in MyFirstPlugin.cpp, this method is
used to add custom menus to Techlog.

Menu items used to trigger activities.

The sequence to customize the TBar (Ribbon) can be summarized as follows using the
PluginMenu API exposed with Ocean:

1. PluginMenuTab: create new menu area for the plug-in.

2. PluginMenuGroup: hew menu group created and added to the new
PluginMenuTab object.

3. PluginMenuAction: new menu action created and added to the new
PluginMenuGroup object and instantiated with an action id

4. PluginMenu: hew PluginMenuTab object added the Techlog main menu.

PluginMenuAction PluginMenuGroup PluginMenuTab PluginMenu
My Kplugin elloWorld plug ample
T i 2 Snake Charts
[:23 Setup Lafvie Setup customplot Snake Chart 2 Test events = Op
|53 Setup crossplot [e= Setup waveform Graphics
@ Setup section plot 2d ~ Imp|

i Update crossplot |4 Setup crossplot AVA Star field
Ul

Figure 24 Plug-in menu classes

To link ReadDataActivity with the PluginMenuAction that triggers this activity the
wizard instantiates the P1luginMenuAction object passing to the constructor of the
class the unique identifier (GUID) of the activity declared at the beginning of
MyFirstPlugin.cpp.

void MyFirstPlugin::getMenu(PluginMenu& menu) const

{
PluginMenuTab tab ("PluginArea");

tab.setTitle("My first plug-in");

PluginMenuGroup group ("PluginGroup");
group.setTitle("My first group");

PluginMenuAction actionReadData (ReadDataActivityId);
actionReadData.setText("Read data");

group.addAction(actionReadData);

tab.addGroup(group);
menu.addTab(tab);

Schlumberger Private - Customer Use

Activity

This new action menu triggers the ReadDataActivity. This class inherits from the
AbstractActivity interface class which is the base class for any Ocean for Techlog
plug-in activity.

class AbstractActivity : QObject
{
public:
virtual void run() = 0;
virtual void dispose();

i
The run method is the main method of an activity, called when the user clicks on the
corresponding menu item.

The dispose method can be overridden in case if you need to cleanup resources
before the activity is unloaded.

The AbstractActivity iS @ QObject S0 every activity declared in a plug-in is a
QObject, but you need to add a Q_OBJECT macro in your activity class to tell the
meta-object compiler to compile the signals and slots.

class ReadDataActivity : public Slb::Ocean::Techlog: :AbstractActivity

{
Q_OBJECT;

private:
void run();

s

Writing the algorithm code

Once the skeleton of the plug-in has been created, you need to implement the plug-in
logic that will be triggered when the user clicks on the action menu declared in the
getMenu method of the plug-in identity class (main plug-in class).

You add the custom algorithm code overriding the run method of the Abstrac-
tActivity interface.

#include "ReadDataActivity.h"
using namespace Slb::Ocean::Techlog;

void ReadDataActivity::run()
{

// TODO: Implement the action menu logic here.

To write the algorithm code:

Getting Started 27
Schlumberger Private - Customer Use

28

Getting Started

Access the APIs from the S1b: :Ocean: : Techlog hamespace.
Code the run method. The work for the activity is completed as follows:

Read the current main project using the Session: :current () .mainProject ()
API. The Project class exposes a function wells, which provides navigation to the
well collections in the project. Parse through all the wells and for each well parse
through all the datasets using the datasets public function exposed in the Wwell
class.

Get for each dataset from the corresponding properties exposed in the Dataset class:

e Its name
e Its size exposed with rowCount public method and returns the number of
rows of the dataset (and therefore of all its variables)

Print the well name, dataset nhame and size from the main Techlog project using
Session: :current () .currentWorkspace () API. The Workspace class ex-
poses the 1logEvent method to print message into Techlog output console with some
different output levels listed in LogLevel enumeration class:

e Debug

e Information
e Warning

e FError

For each dataset parse through all its variables using the variables public function
exposes in the Dataset class.

Get for each variable from the corresponding properties exposed in the Variable
class:

e Jts name
e Itsunit
o Its family

And print its property values in the Techlog output console using the 1logEvent
method of the current Workspace with a LogLevel set to Information.

Call stop method inherited from AbtractActivity interface class at the end of your
activity run method to stop the plug-in activity. Otherwise, the plug-in will stay in the
background until the user manually stops the plug-in task in the workspace manager of
Techlog (Figure 25) or stops Techlog.

Schlumberger Private - Customer Use

Workspace

Current workspace

4 Tasks
0% myfirstpluginD6d.dil
4 Workspaces .
4 Techlog workspace
Plug-in manager
» m Saved workspaces

Al
=
~

Figure 25 Techlog workspace manager
The following shows the complete activity class:

#include "ReadDataActivity.h"

#include "tsdklock.h"
#include "tsdkloglevel.h"
#include "tsdkvariableenums.h"

using namespace Slb::Ocean::Techlog;

void ReadDataActivity::run()
{

// TODO: Implement the action menu logic here.

// Lock all
Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

// Get the current workspace from the current session
Workspace workspace = Session::current().currentWorkspace();
// Get the main project from the current session

Project proj = Session::current().mainProject();

// Iterate on all the wells in the project
foreach (Well well, proj.wells())
{
// iterate on all the datasets of the current well in the loop
foreach(Dataset dataset, well.datasets())
{
// Get the name and size of the current dataset in the loop
QString datasetName = dataset.name();

QString datasetSize = QString::number(dataset.rowCount());

// Display well name and dataset infos in Techlog output console
workspace.logEvent(LogLevelInformation,

QString("Well name = %1, Dataset name = %2, Dataset size = %3")

.arg(well.name()).arg(datasetName).arg(datasetSize));

Getting Started 29
Schlumberger Private - Customer Use

// iterate on all the variables of the current dataset in the loop
foreach(Variable var, dataset.variables())

{
// Get the name, unit and family of the current variable in the loop
QString varName = var.name();
QString varUnit = var.unit();
QString varFamily = var.family();
// Display variable infos in Techlog output console
workspace.logEvent(LogLevelInformation,
QString("Variable name = %1,Variable unit = %2,Variable family = %3")
.arg(varName).arg(varUnit).arg(varFamily));

}

}

}

// release objects locked
lock.release();

// Stop the plug-in activity
stop();

Running the plug-in

30

Getting Started

You have just completed the modification of the run method. In this section, you will
finish building the solution and running your plug-in in Techlog.

Build your solution in Visual Studio in release 64 bit. This creates a new folder for the
plug-in in the deployment folder (Extensions folder) of the Ocean framework. This
plug-in folder contains the new plug-in library. When it starts the module manager
scans the Extensions folder and shows the new library in the list of available plug-ins.
The plug-in menu is added to Techlog when the plug-in is enabled in the module
manager. The activity runs as a separated process when the user clicks on the action
menu, at this moment the plug-in appears as a new task in the list of tasks of the
current workspace of Techlog.

Open the Techlog module manager and enable MyFirstPlugin. My first plug-in tab
is added to the Techlog native tabs. This tab contains only one group My first group
and this group only one action menu Read Data (Figure 26).

Schlumberger Private - Customer Use

Read data

| My first group

Select your license configuration

©

Ocean
Framework
)

o WhPlugin
Ocean for Techlog et example plugin
‘.I. Default TestRunnerPlugin
TestRunnerPlugin

Caneel

B Output

€W el
Figure 26 Enable MyFirstPlugin in the module manager

Import Techlog fundamentals dataset deployed with the Ocean framework (% 7ech-

logSDKHome % |demo-project) and click on the Read Data action menu. The Read

Data activity shows all the wells, datasets and variables in the Techlog message log

(Figure 27).

Note: Opening a Techlog project with an Ocean framework license will taint the
project.

Dota Utility s Driling My first plug-in

My fist gro
Output

[17:36] Well name = Well4, Dataset name = MICE, Dataset size = 3

17361 DEPTH Variable unit = ft Variable family = Core Depth
17361 PERM Variable unit = mD Varisble farmily = Core Permeability

17361 PHIVarisble nit = v/ Variable family = Core Porosity

17361 Shy,Variable unit = vy Variable family = Core Mercury Saturation (Array)
17361 EPTH Variable unit = ft Variable family = Measured Depth

[17:36] Variable name = PC_Lab,Variable unit = bar Variable family = Capillary Pressure Laboratory (Array)
[17:36] Variable name = SamplelD,Variable unit = unitless Variable family =
w7361 Well4, Dataset ize = 6

7:36] 1D Variable unit = ft,Varizble family = Measured Depth
7:36] ONE_NAME Variable unit = Variable family = Zone Name
[17:36] Well name = Well, Dataset name = SURVEY, Dataset size = 74

[17:36] AZLVariable unit = deg,Variable famil

[17:36] ICLINATION, Variable unit = deg,Variable family = Hole Deviation
117:36] IDVariable unit = ft Variable family = Measured Depth

[17:36] Well name = Well4, Dataset name = TL_WellPath, Dataset size = 17847

[17:36] Veriable name = BOREHOLE_AZIMUTH Varicble unit = dega Veriable fomily = Hole Admuth
[17:36] Veriable name = BOREHOLE_DEVIATION Variable unit = dega,Veriable family = Hole Deviation
[17:36] Veriable name = DL Variable unit = dega/100ft Variable family = Dog Leg Severity

[17:36] Veriable name = MD Varicble unit = ft Varible fanily = Measured Depth

[17:36] Veriable name = THLVariable unit = ft Variable family = True Horizontal Length

[17:36] Veriable name = TVDNariable unit = ft Variable family = True Vertical Depth

17:36] 3 = True Vertical Depth
17:36] IDSS, Variable unit = ft Variable family = True Vertical Depth Sub Sea
17:36] # Variable family = X Offset

[17:36] Variable name = YOFFSET,Variable unit = ft Variable family = Y Offset
[17:36] Wellname = Well9, Dataset name = DATAFULL, Dataset size = 1601

[17:36] Variable name = A,Variable unit = Variable family =

[17:36] Variable name = ATL0,Variable unit = OHMM,Variable farmily = Medium Resistivity

[17:36] Variable name = AT20,Variable unit = OHMM,Variable farmily = Array Resistivity

[17:36] Variable name = AT30.Variable unit = OHMM,Variable farmily = Array Resistivity

[17:36] Variable name = AT60,Variable unit = OHMM,Variable farmily = Array Resistivity

[17:36] Variable name = AT30,Variable unit = OHMM Variable farmily = Deep Resistivity

[17:36] Variable name = BAD_HOLE Variable unit = Variable family = Bad Hole Flag

[L7:36] Variable name = BHT_DK Variable unit = DEGF Variable family = Bottom Hole Temperature

[17:36] Variable name = Bound Water QE Variable unit = v/yVariable family = Bound Water Volume Fraction
[17:36] Variable name = B5_DK Variable unit = IN Variable family = Bit Size

1L7:36] Variable name = C_PHLVariable unit = Variable family = Core Porosity

1L7:36] Variable name = CALC_EO,Variable unit = FLAG,Variable farmily = Caliper

[17:36] Veriable name = CALLVariable unit = IN,Variable farnily = Caliper

[17:36] Veriable name = CKX200 Vericble unit = MO Variable family = Core Permesbility

[17:36] Variable name = CKX200_C,Veriable unit = MD,Variable family = Core Permeability

Figure 27 Read Data activity ouput messages

You have now written, built, and run your first Ocean for Techlog plug-in.

Getting Started 31
Schlumberger Private - Customer Use

Debug the plug-in

To debug the plug-in you have to build it in debug mode. Go to the Visual Studio
solution and change the build mode from release x64 to debug x64. Still in Visual
Studio open the ReadDataActivity.cpp file and into the run method of the activity
add a breakpoint on the first line.

Re-build the solution, close and reopen Techlog.
A new library called MyFirstPlugin64D.dll is generated in the plug-in folder. Then go
back to Techlog, open the module manager and refresh the plug-in list (right click on

Ocean plug-ins node). The new plug-in for debugging appears in the module manager
below Ocean plug-ins category. Disable the release version and enable the debug one.

Techlog 2016 - License select X

Select your license configuration
Techlog Modules
4 Ocean plug-ins
Ocean & HelloWorIdE

Refresh all availabilities

Framework

/1) [@] myFirstPiug
@ myFirstPlug Expand All

[@ myPlugin Collapse All
L Default [7] ©cean for Techlog .Net example plugin
|:| TestRunnerPlugin

Refresh plug-in list]

[7] TestRunnearPlugin

Figure 28 Refresh plug-in list

Press the Ctrl+Alt key of your keyboard and click on the Read Data action menu. The
Visual Studio Just-In-Time debugger pops up and asks you to select from the list
a Visual Studio solution debugger to attach to the plug-in host which is for a plug-in
built in 64 bit the techlogpluginhost64D.exe. Select MyFirstPlugin in the list and
click Yes as shown in Figure 29.

32 Getting Started
Schlumberger Private - Customer Use

My firstplug-in

Do you want 1o debug using the selected debugger?

(e J[w

Figure 29 Debug the plug-in

The debugger stops on the first line of the run activity method where the breakpoint
has been added.

If Visual Studio complains about a Managed application please Manually choose
the debugging engines turning on this option in the Visual Studio Just-In-Time
debugger window. A popup shows up listing all the available debugger engines,
enable the Managed debugger for which version of the .NET framework you want to
debug. Unless you're debugging a .NET based plugin, you can simply not attached the
.NET/Managed debugger at all.

r B
Attach to Process ﬁ

[7876] D:\Software\Techlog\Techlog 2016.1\Techlog 20161 Alpl

Choose the types of code to debug:
[C] Managed (v3.5, v3.0, v2.0)

Mative
[7-sqL
[] Managed Compatibility Mode

The following code will be debugged:

Mative

Figure 30 Visual Studio debugger engines

Getting Started 33
Schlumberger Private - Customer Use

Techlog Viewer plug-in development (Schlumberger Internal only)

Techlog Viewer specific

Signed plug-ins

The Techlog Viewer is a software to facilitate display and interaction with data.

To allow vyour plug-in to run on Techlog Viewer, simply «call the
setTechlogViewerActivity function in the PluginInformation class, with the
activity ID in parameter.

class PluginInformation

{
public:

void setTechlogViewerActivity(const QString
&techlogViewerActivity)
}i

Below is an example:

static QString
ReadDataActivityId(QLatinlString("f1007fle-1ce3-477e-a47f-d91f4e7elb7b
"))

void MyFirstPlugin::getInformation(PluginInformation& pluginInformation)
const

{
pluginInformation.setTechlogViewerActivity(ReadDataActivityId);

Note: Techlog Viewer is mono-well by design, developing a plug-in that will use
several wells will result in having an assert displayed in the Techlog Viewer
output window.

Having a signature on the plug-in is not necessary for internal development only.
However a .sign file will be mandatory if any external deployment is planned.

To generate the signature file, please contact the Techlog Platform Product Champion
- ERivoliler@slb.com -

Create unit tests for your plug-in

34

Getting Started

By exposing a couple of basic concepts, Ocean for Techlog enables plug-in developers
to write and run automated tests using their unit testing framework of choice while still
giving the unit tests access to the full functionality of Ocean for Techlog. The tutorial
Unit Testing Techlog Plug-ins in the OceanForTechlog.chm file shipped with the
Ocean package outlines how to get started and how the tests can be integrated into a
continuous integration environment.

Please refer to this tutorial for more details on how to create unit tests with Ocean for
Techlog.

Schlumberger Private - Customer Use

mailto:ERivoliier@slb.com

Creating a Test plug-in with Visual Studio

To create a Test plug-in project using Visual Studio:

Add a new test plug-in project to the solution that contains an Ocean plug-in project by
clicking right on the solution in the Solution Explorer. Then select in the contextual
menu Add > New Project. In the Project types area, under Visual C++ project
type, select Ocean > Techlog 2016.1. Then select the Ocean Test Plug-in tem-
plate.

Note: A test project cannot be created into an empty Visual Studio solution. Test
project wizard is looking at a main plug-in project in the solution.

Provide the name “TestMyFirstPlugin” for the project. Click OK to start the Wizard (see

Figure 31).

Add New Project (B [t
b Recent |.NETFramew0rk4.5 v|Sor‘tby:|DefauIt «| &5 |i=|| SearchInstalled Te B -
4 Installed &) TS

Ocean Plug-in Visual C++ Type: Visual C++
-
b Visual Basic Ocean Test Plug-in Wizard 16.1
Visual C2 (-] . .
b Visual C3 @ Ocean Plug-in Installer Visual C++
4 Visual C++
I+ Store Apps Ocean Test Plug-in

ATL

CLR

General

MFC

Test Ocean Test Plug-in template

Win32

4 Ocean Ocean Project type
Techlog 2015
[Lechiog 2016, Project name

-

b Online Clickheretme and find templates.
MName: TestMyFirstPlugin
Location: |D:\work\Ocean\OceanTrair1ing\OceanTechIog\EUlG\DevGuide\Files\ v| Browse... |

I QK | [Cancel

Figure 31 New project window

Test plug-in wizard shows up (see Figure 32).
The user is requested to set the following inputs:

e Class: Test plug-in class name
¢ Main project: select the Ocean plug-in presents in the solution that you want
to test. Ocean plug-in will be a dependent library of the Test plug-in.

Click Finish in the dialog.

Getting Started 35
Schlumberger Private - Customer Use

Inspecting the files

36

Getting Started

-
 Mew Techlog Test Project
Ocean Plug-in Test Create
Please set the options of your new plug-in test. O C e O n @
Class: Test MyFirst Plugin
Main project: [l'ﬂ'I]rFlrstPIugin -
r ini
Schiumberger —— =

Figure 32 Test Plug-in wizard

Note: The path to the “3rdparty” folder of the Ocean package that contains
Google test libraries (debug and release folders) and header files (include
folder) is added to the project by the wizard.

The Ocean Test Plug-in Wizard adds a project named “TestMyFirstPlugin” in the Visual
Studio Solution Explorer. The project contains header and source file for the Test Plugin
class that was created, and Test Activity and runner classes (see Figure 33.)

Schlumberger Private - Customer Use

Implement the tests

Solution Explorer
@ e-ea@m|l =4
Search Solution Explorer (Ctrl+5)

fa] Solution 'MyFirstPlugin' (2 projects)
4 [%] MyFirstPlugin (Visual Studio 2010)
b r5 External Dependencies

o Header Files
B o ResourceFiles
P Source Files

4 [A] TestMyFirstPlugin (Visual Studio 2010)
o5 External Dependencies

¥ Header Files /
4 TesthyFirstPlugin.h

B TesthyFirstPlugin_precompiled.h
B TestMyFirstPluginActivityltern.h
]

Test Plugin header

F

Test Activity header

TesthdyFirstPlugini3TestRunner.h € Test Runner header

TestMyFirstPluginTests.h €——0w___ Gooale tests header
Resource Files

=

F Source Files

*4+ TestExports.cpp

*++ TestMyFirstPlugin.cpp /
++ TestMyFirstPluginActivityltem.cpp €

+4 TestMyFirstPluginGTestRunner.cpp g&———— Test Runner source
+4 TestMyFirstPluginTests.cpp €=———ou__ Google tests source

Test Plugin source

Test Activity source

v W W W W 4

Figure 33 Test plug-in header and source files in Solution Explorer

The Test Activity runs all the Google tests implemented in the Test plug-in through the
Test runner utility class.

Google test API provides a humber of options out there you could/should consider
depending on your requirements. You can refer to the official Google test online
documentation http.//code.google.com/p/googletest/.

In TestMyFirstPluginTests.cpp file, there are two types of Google tests created by
the wizard.

The first one uses the TEST macro to define the test.

TEST has two parameters: the test case name and the test name. After using the
macro, you should define your test logic between a pair of braces. You can use a bunch
of macros to indicate the success or failure of a test.

In the following example, the test creates a well in Techlog project, sets its color
property to blue and checks if the color is correctly set.

TEST(GTestNamel, OkTest)
{
Lock lock = LOCK_CREATE_AND ACQUIRE_ALL(lock);

Project project = Session::current().mainProject();
Getting Started 37
Schlumberger Private - Customer Use

http://code.google.com/p/googletest/

38

Getting Started

Well well = Well::create("MyWell", project);
Droid wellDroid = well.droid();
well.setColor(Qt::blue);

lock.release();

lock
well

LOCK_CREATE_THEN_ACQUIRE_OR_RETURN(lock, wellDroid);
DomainObject::get(wellDroid).tryCast<Well>();

if (well.isNull())

{
ASSERT_FALSE(well.isNull());
lock.release();
return;

EXPECT_EQ(well.color(), Qt::blue);
lock.release();

lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);
well.erase();
lock.release();

}
The second one uses the TEST_F macro that defines a Google test fixture.

A test fixture is a place to hold objects and functions shared by all tests in a test case.
Using a test fixture avoids duplicating the test code necessary to initialize and cleanup
those common objects for each test. It is also useful for defining sub-routines that your
tests need to invoke a lot.

In the following example “"MyWell” is initialized in SetUp method called before the test
is run. Check in the test fixture if the color of “MyWell” is blue. *MyWell” is erased in
TearDown method called after the test is run.

void TestMyFirstPluginTest: :SetUp()

{
Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL (lock);
Project project = Session::current().mainProject();
Well well = Well::create("MyWell", project);
well.setColor(Qt::blue);
lock.release();

void TestMyFirstPluginTest::TearDown()

{
Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

Project project = Session::current().mainProject();
Well well = project.wells().get("MyWell");
well.erase();

Schlumberger Private - Customer Use

lock.release();

TEST_F(TestMyFirstPluginTest, WellColor)

{
Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

Project project = Session::current().mainProject();
Well well = project.wells().get("MyWell");

if (well.isNull())

{
ASSERT_FALSE(well.isNull());

lock.release();
return;

EXPECT_EQ(well.color(), Qt::blue);

lock.release();
}

Ocean test plug-in project is created in a Visual Studio solution that already hosts an
Ocean plug-in project to allow the developer to make some calls to Ocean plug-in
methods in Google tests.

if we have in ReadDataActivity of MyFirstPlugin a public method that allows us to
remove from a Techlog Variable all the missing values and that we want to test this
plug-in functionality calling it from a Google test of my Test plug-in.

Variable ReadDataActivity::removeMissingValues(Variable variable)

{
Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

Dataset dataset = variable.dataset();
Well well = dataset.well();

Variable ref = dataset.findReferenceVariable();

QVector<float> resultVarValues;
QVector<float> resultRefValues;

int rowCount = variable.rowCount();

for (int i = @; i < rowCount; i++)
{
if (variable.getFloatValue(i) != Absent::MissingValue)
{
resultVarValues.append(variable.getFloatValue(i));
resultRefValues.append(ref.getFloatValue(i));

Getting Started 39
Schlumberger Private - Customer Use

Dataset resultDataset =
Dataset::create(QString("%1_result").arg(dataset.name()),
ref.name(), ref.format(), resultVarValues.count(), well);

Variable resultRef = resultDataset.findReferenceVariable();
resultRef.setFamily(ref.family());
resultRef.setUnit(ref.unit());
resultRef.setFloatValues(resultRefValues);

Variable resultVar =
Variable::create(variable.name(), resultDataset,
variable.format(), VariableTypeContinuous, 1);
resultVar.setFamily(variable.family());
resultVar.setUnit(variable.unit());
resultVar.setFloatValues(resultVarValues);

lock.release();

return resultVar;
}
The first thing that the plug-in developer needs to do is to export the

ReadDataActivity class when MyFirstPlugin is built and import ReadDataActivity
class when TestMyFirstPlugin is built. This can be done by adding to MyFirstPlugin

project settings a conditional compilation tag in C/C++ > Preprocessor >
Preprocessor Definitions (see figure 34).

GettingStarted Property Pages ? R
Configuration: | Active(Debug) ~| Platform: | Active(i4) ~| [Configuration Manager... |
b Common Properties Preprocessor Definitions WIN32; DEBUG; WINDOWS; USRDLLWIN32PROJECTS_EXPORTS;PLUGIN_VENDOF
4 Configuration Properties Undefine Preprocessor Definitions
. Undefine(" prap ocessor Definitions B |
Ocean for Techlog Ignore St
Debugging Preproceq | WIN32
VCe+ Directories Preproced | _DEBUG
4 CiCe+ Keep corf | VNDOWS
General -USRDLL
oo WINI2PROJECTS EXPORTS
P PLUGIN_VENDOR_NAME="5 (VendorName)”
Preprocessor PLUGIN_VERSION="S(PluginVersion)”
Code Generation BLLGIN NAME "S(BluginName)”
P— _BUILDING_ACTIVITY
Precompiled Headers -
Output Files
Browse Information Inherited values:
Advanced
Al Options
Command Line
b Linker
b Manifest Tool
b XML Document Generator
I Browse Information
b Build Events
I Custom Build Step
b Code Analysis [Inherit from parent or project defaults
Preprocessof 1
e
< m »

Figure 34 Add conditional compilation tag in Ocean plug-in settings

40 Getting Started

Schlumberger Private - Customer Use

Then in ReadDataActivity header file, the code below must be added:

#ifdef T_BUILDING_ACTIVITY

define Dl1lExport _ declspec(dllexport)
#else

define D1lExport _ declspec(dllimport)
#endif

class D11Export ReadDataActivity : public
Slb::0cean::Techlog: :AbstractActivity

{
Q_OBJECT;

private:
void run();

public:
Slb::0cean::Techlog::Variable
removeMissingValues(Slb::Ocean::Techlog::Variable variable);
}s
The removeMissingValues function is imported by the Test plug-in and can now be
called in a Google test as follows.

TEST_F(TestMyFirstPluginTest, RemoveMissingValues)

{
Lock lock = LOCK_CREATE_AND ACQUIRE_ALL(lock);

Project project = Session::current().mainProject();

Variable variable =
project.wells().get("Welll").datasets().get("DATAFULL").
variables().get("GR");

lock.release();

ReadDataActivity *readDataActivity = new ReadDataActivity();
Variable resultVar = readDataActivity->removeMissingValues(variable);

lock = LOCK_CREATE_THEN_ACQUIRE_OR_RETURN(lock, resultVar);

for (int i = @; i < resultVar.rowCount(); i++)
{
if (resultVar.getDoubleValue(i) == Absent::MissingValue)
{
ASSERT_FALSE(true);
lock.release();
return;

Getting Started 41
Schlumberger Private - Customer Use

ASSERT_TRUE(true);

lock.release();

}
In TearDown function the result dataset is erased after the test.

void TestMyFirstPluginTest::TearDown()

{
Lock lockl = LOCK_CREATE_AND ACQUIRE_ALL(lockl);
Dataset dataset =
Session::current().mainProject().wells().get("Welll").datasets().
find ("DATAFULL_result");

if (!dataset.isNull())
dataset.erase();
lockl.release();

Note: The test fixture TestWorkstep created by the Ocean Test plug-in wizard
shows how to test AWI workstep method, waiting for the end of the
processing in order to assert the results.

Run the tests

Once the solution is built MyFirstPlugin and TestMyFirstPlugin can be listed by the
Techlog module manager.

Open the module manager, refresh the list of plug-ins and enable TestMyFirstPlugin.

42 Getting Started
Schlumberger Private - Customer Use

Techleg 2016 - License selection

Select your license configuration

Techlog Modules

4 [H Ocean plug-ins

Q
Frarr:::\rr;rk [C] & Heloworld

(1/1) [@] myFirstPiugin
@ Cresie 5 new profile [C1 8] myFirstPlugin
— : "] E hyPlugin
|:| Ocean for Techlog \Met example plugin
8] TestMyFirstPlugin
[7] TestRunnerPlugin

s
“

& Default

|:| TestRunnerPlugin

0K | | Cancel

Figure 35 Enable test plug-in

GTest tab is added to the Techlog menus that contain a gTest action item from which
the test are run in the Techlog context. When the tests have finished to run, the user
can open the result tests log file directly from the Techlog output console (see figure
36).

Home Plot Data Uty Studio Petrophysics y Geomechanics Driling Reservoir Geophysics Unconventionals [T m

gTest
Gtest
Project browser 0oBo=
@
o —
(NG b
o o Running 4 tests from 2 test cases.
(4 [E[@[[Global test environment set-up.
fundamentals 161 _untainted | (R [1 test from GTestNamel
o @oam GTestNamel.okTest
Q [GTestNamel.okTest (28 ms)
> b mywel{b7i69765-2bb1-42 | (| [- 1 test from GTesthamel (28 ms toral)
> A war | K 3 tests from TestMyFirstPluginTest
> b we2 TestMyrirstPluginTest.wellcolor
v TestMyFirstPluginTest.wellcolor (59 ms)
TestMyFirstPluginTest.RemoveMissingvalues
TestMyFirstPluginTest.RemoveMissingvalues (161 ms)
Workspace F 30X TestMyFirstPluginTest. Testworkstep
[TestMyFirstPluginTest. TestwWorkstep (1009 ms)
Curentworkspace | ([|- - - - 3 tests from TestMyFirstPluginTest (1229 ms total)
G| N Global test enviromment tear-down
4 [Workspaces [==========] 4 tests from 2 test cases ran. (1257 ms total)

4 tests.

Techlog workspace
> [Saved workspaces

Output

o [2016-02-2518:26] e mywell{(b7f69765-2bb1-42e2-982b-37{3681c1d5e}.mydataset.outputAbyB was created successfully
@ (2016-02-2518:25] Workijdl execution time: 04332135 (MyWorflow)
@ (2016-02-251826] Eesuithie

Work.| Zon..| Prop..] M..| Co.. Pa.,
Figure 36 Gtest plug-in runs in Techlog context

Getting Started 43
Schlumberger Private - Customer Use

You can also run the tests directly from Visual Studio through the Test Adapter.

1. In Visual Studio click on TEST menu and select Windows > Test Explorer. Text
Explorer window opens in Visual Studio and when Test Plug-in is built all the tests
are displayed in this window:

] - Microsoft Visual Studi
FILE EDIT VW QTS VASSISTX PROJECT BULD DEBUG TEAM TOOLS | TEST | OCEANZ01S ANALYZE WINDOW HELP
{@-0| @ -2 W9 - | b Locl Windows Debugger ~ (- [Debug Run [R S AT I Y H
= Debug 5
p 1 TestMyFirstPluginTests.c _—
t 3
iz + | Search £ -l GTEsTTEST i e
Test Settings »

Run All | Run.. + | Playlist : All Tests + 7 well-well-=-py Windows » IB& Test Explorer
4 Not Run Tests (3) i (well.ishull()) e
i

O GlestNamelOkTest b b ASSERT_FALSE(well.ishy
© TestMyFirstPluginTest RemoveMissingValues 1

lock.release();
© TestMyFirstPluginTest WellColor

b return;

fell. color (), -tz blue) s

ek release();

SITEST_F (TestiyFirstPluginTest, -RemoveMissingValues)

{ Lock-lock =~ LOCK_CREATE_AND_ACQUIRE_ALL(lock);

? Project-project-=-Session: :current() .mainProject();

? Variable-variable-=-project.wells().get("welll").datasets().get("DATAFULL") .variables().get("6R");
b lock.release()s

t t vity-=-new £0)s
? Variable-resultVar = vity->removeMissingValues (variable);

t lock-= LOCK_CREATE_THEN_ACQUIRE_OR_RETURN(lock, resultVar);
for (int-i =8; i< resultVar.rowCount(); it++)
if - (resultVar.getDoubleValue (1) -==-Absent: :MissingValue)

b ASSERT_FALSE(true);
+ lock.release();
+ return;
H

:

? ASSERT_TRUE(true);

+ lock.release();
¥

Output
showoutputfrom: [Tests ||| [z

—————— Discover test started ------
Test run will use DLL(s) built for framework Frameworkds and platform X86. Following DLL(s
TestHyFirstPlugin.dll is built for Framework None and Platform X64.

Go to http://go.microsoft.com/fulink/?LinkID=2368774c]cid-8x489 for more details on managing these settings.
Unable to locate the solution directory. Please ensure that the solution has been saved

========== Discover test finished: 3 found (0:00:00.2520762) ====

) will not be part of run:

Figure 37 Open Test Explorer window

2. Open Techlog and enable TestRunnerPlugin in Techlog module manager. There
are two TestRunnerPlugins available in the list: one to run the tests built in debug
mode and the other one to run the tests built in release mode.

44 Getting Started
Schlumberger Private - Customer Use

Techlog 2016 - License selection

Select your license configuration

Techlog Modules

4 Ocean plug-ins
F,ﬁ::ﬁ;,k [T & Helloworld
[] 8] myFirstriugin
L [] 8] myFirstriugin
— DHMyPIugin
& Default ,, [7] Ocean for Techlog .Net example plugin
[@] TestMyFirstPlugin
TestRunnerPlugin
|:| TestRunnerPlugin

0K | | Cancel

Figure 38 Enable TestRunnerPlugin

3. Once Techlog is up and running with TestRunnerPlugin enabled, go back to Visual
Studio and click the Run all link in the Test Explorer. The tests run in Techlog
through the TestRunnerPlugin and results of the tests are displayed directly in Test
Explorer window.

Test Explorer * 1 x

IS = Search P -

Run All | Run.. v | Playlist: &ll Tests «

4 Failed Tests (2)
€3 TestMyFirstPluginTest.RemoveMissingValues
€3 TestMyFirstPluginTestWellColor

4 Passed Tests (1)
@ GTestNamel.OkTest

TestMyFirstPluginTest.RemoveMissingValues

Sources no source available

€3 Test Failed - TestMyFirstPluginTest RemoveMissingValues

Figure 39 Run all tests

Getting Started 45
Schlumberger Private - Customer Use

Note: Tests have to be run with “Default Processor Architecture” option set to x64
in TEST > Test Settings > Default Processor Architecture menu. If
x64 processor is not selected error message below is raised when tests are
run.

Can't run the tests in Techlog. Please make sure that you use x64 version of VS
Test Explorer. An exception occurred while invoking executor
'executor://techloggtestexecutor/': An attempt was made to load a program with
an incorrect format.

Note: If several versions of the Ocean framework are installed make sure that the
right Test Adapter version is selected in Ocean > Techlog Test
Adapter menu in order to allow the Test Explorer to discover tests

properly.

OCEAN | ANALYZE WINDOW HELP
5 @ Ocean Start Page -
I M Upgrade Ocean for Techlog Project

D Register
I Help L
; Ocean Quality Assistant
Techlog Test Adapter b Enable Code Coverage
Techlog Version ' | & 20161 Alphal

2015.3
2015.2
20151

Figure 40 Techlog Test Adapter version

Create an installer for your plug-in

46

Getting Started

Ocean for Techlog Visual Studio templates deployed by Ocean WIX installer provide a
project template that allows plug-in developers to package their plug-ins through a WIX
installer. The prerequisite to use the Ocean Plug-in installer template is to have WIX 3.8
or an earlier version installed on his machine.

To create a plug-in installer project using Visual Studio:

Add a new plug-in installer project to the solution that contains the Ocean plug-in
project that you want to package by clicking right on the solution in the Solution Ex-
plorer. Then select in the contextual menu Add > New Project. In the Project types
area, under Visual C++ project type, select Ocean > Techlog 2016.1. Then select
the Ocean Plug-in Installer template.

Note: An installer project cannot be created into an empty Visual Studio solution.
Installer project wizard is looking at a main plug-in project in the solution.

Schlumberger Private - Customer Use

Provide the name “MyFirstPluginInstaller” for the project.
the Wizard. (See Figure 41.)

Click the OK button to start

Add Mew Project

[EEE==)

P Recent

[.NET Fremework 45 ~|Sort by: | Default

«| ii* i=| SearchlInstalled Te 2 ~

4 Installed
Visual C++

N Ocean Plug-in

b Visual Basic

Type: Visual C++
Ocean Plug-in Installer Wizard 16.1

b Visual C#
4 Visual C++
b Store Apps
ATL

Ocean Plug-in Installer
Iﬂ Ocean Test Plug-in

Visual C++

Visual C++

Ocean Plug-in Installer template

CLR

General

MFC

Test

Win32

4 Ocean

Techleg 2015
Techlog 20161

Ocean Project type

Project name

-
Clickﬁe to ;0 online and find termplates.

b Online
MName: MyFirstPluginnstaller
Location: |D:\work\Ocean\OceanTraining\OceanTech\og\2016\De\rGuide\FiIes\ v| Browse...

Figure 41 New project window

Plug-in installer wizard shows up (See Figure 41).

The user is requested to set the following inputs:

Title: title of the Ocean plug-in that is showing up during plug-in installation

¢ Company: company name that owns the Ocean plug-in. This information is
showing up during plug-in installation.

e Description: description of the Ocean plug-in that is showing up during
plug-in installation

¢ Projects: select the Ocean plug-ins present in the solution that you want to

package in the installer.

Click Finish in the dialog.

Getting Started 47

Schlumberger Private - Customer Use

F R
+, New Plug-in Installer E@ﬂ

Ocean Plug-in Installer Create

Flease set the options of your new plug-in installer, OC eon @

Title:
My First Plugdn
Company:

Schiumberger
Description:
This is my first plug-n

Projects
GettingStarted
[] TestMyFirstPlugin

XO =

[#-g+ Techlog Extensions Directory

’ Cancel][Finish =

Figure 42 Plug-in installer wizard

WIX installer project for MyFirstPlugin is added to the Visual Studio solution. Build the
project, a MSI installer is generated in output of the build and can be used to deploy the
plug-in in Techlog for the plug-in users.

Solution Explorer
@le--udp|ls=a
Search Selution Explorer (Ctrl+5)

fad Solution 'MyFirstPlugin' (3 projects)
b [% MyFirstPlugin (Visual Studic 2010)
4 W% MyFirstPlugininstaller
4 | 7 References
A WiIExtension

3 Diis

[Images

2] Productwes
b [TestMyFirstPlugin (Visual Studic 2010)

Figure 43 Plug-in installer project

Deploy folders and files with the plug-in dll

You may have to deploy additional files following a particular folders structure with your
plug-in dll. WIX installer created through the Ocean plug-in installer template allows
you to add those files editing the Product.wxs file.

Let's consider a plug-in activity that creates a Logview from a layout template stored at
the plug-in level.

48 Getting Started
Schlumberger Private - Customer Use

void SetuplLogviewActivity::run()

{
Lock lock = LOCK_CREATE_AND ACQUIRE_ALL(lock);
Project project = Session::current().mainProject();
Workspace workspace = Session::current().currentWorkspace();
// Apply the template for all the wells in the projects
QList<Well> wells = project.wells().tolList();
LogviewTemplate logviewTemplate =
LogviewTemplate::get(StoragelLevelPlugin, "Well9 short");
Logview logview =
Logview: :create(workspace, logviewTemplate, wells);
lock.release();
stop();

}

The layout template Well9_short.xml has to be deployed with the plug-in dll in a folder
named LayoutTemplates.

In the lower section of the Ocean plug-in installer wizard dialog allows you to do this.

You can browse a folder on the disk and add it or you can add a virtual one that will be
created at the plug-in installation time.

1. Add LayoutTemplates folder to plug-in folder

EIL__' IhyFirst Plugin
=i 2016.1
=-i 1.0

2. Add Well9_short.xml file to new LayoutTemplates folder

Getting Started 49
Schlumberger Private - Customer Use

50

Getting Started

ﬂﬂ

= E[Add 1"|IEr frcm disk }
=8 = I"-"h.rFrstPlugln
B-E 20161
-2 1.0
EI;__' Layout Templates
- & Well3_short sl

You can also delete folders and files with the Remove button. When you are
happy with folder structure and files that will be deployed with the plug-in you can click
Finish in the dialog. Then the Ocean plug-in installer is added to the Visual Studio
solution with folders and files added to Product.wxs file.

After the fact some additional folders and files can be added modifying manually the
Product.wxs file as follow:

1. The file must be added to the <Feature></Feature> block tags in the
Product.wxs file.

<Fea-
tu-
re Id="ProductFeature" ConfigurableDirectory="EXTENSIONS" Descriptio
n="¢(var.description)" Title="$(var.mainpluginname)" Level="1">
<ComponentRef Id="Component" Primary="yes" />
<ComponentRef Id="IniFile" Primary="yes"/>
<ComponentRef Id="MyLayoutTemplate" Primary="yes"/>
</Feature>

2. Then declare inside the <Directory></Directory> block tags of the plug-in dll a
<Directory> </Directory> block tags with name attribute value equals to the name
of the folder that you want to deploy with the plug-in dll (LayoutTemplates). The
file, in our case Well9_short.xml, is added inside the new <Directory></Directory>
block tags with component id previously declared.

<Directory Id="PluginVersion" Name="$(var.mainpluginversion)">
<Compo-
nent Id="Component" Guid="80dd22d7-5e83-4967-88f3-9fec434a6b83">
<Condition>TECHLOGPATH</Condition>
<File Id="fi11649aa340c434607ae9771ceeebebd51" Source="..\MyFirs
tPlugin/x64/$(var.Configuration)/MyFirstPlugin.d11l" />
</Component>
<Directory Id="LayoutTemplates" Name="LayoutTemplates">
<Compo-
nent Id="MyLayoutTemplate" Guid="80dd22d7-5e83-4967-88f3-9fec434a6b8
4">
<Condition>TECHLOGPATH</Condition>
<File Id="fil1649aa340c434607ae9771ceeebeb052"

Source="..\MyFirstPlugin/x64/$(var.Configuration)/Well9 short.xml" /
>
</Component>
</Directory>
</Directory>

Schlumberger Private - Customer Use

3. The WIX installer searches for the file in the output directory of Visual Studio
plug-in project.

Well9_short.xml file must be:
e copied to the Visual Studio plug-in project directory

e added to the Visual Studio project (Add > Existing item in contextual menu
of the project)

e copied from the project directory to the output directory adding the following
command line in Post-Build Event of project properties:

copy "Well9 short.xml" "$(OutDir)Well9 short.xml" /Y

MyFirstPlugin Property Pages 2 =
Configuration: | Active(Debug) +| Platform: [Active(54) v‘ [Configuration Manager... |
b Common Properties Command Line mkdir -p "$(TLUSERDIR)\Extensions\S(Creator\S(ProjectName)\S (Techlogversion\S (PluginVer
4 Configuration Properties D
G:,m\ " Use In] Command Line (8. [
Debugging
VC++ Directories
- mkdir -p *S(TLUSERDIR)\Extensions'$(Creaton\S (ProjectName)\S (Techlogversion)\S(PluginVersion)"
b &%= oy " S(OUDICIST: (Tacgetft)” " STLLISERD) jectNam: NS (Tec "
b Linker | copy "Wellg_short.am" *S(OutDin Welld_short xml” /Y |
I Manifest Tool
b XML Document Generator|
I Browse Information
4 Build Events
Pre-Build Event
Pre-Link Event
Post-Build Event
b Custom Build Step |
I Code Analysis Commandl||)
Specifies d
< i v Macros> >
o

Figure 44 Post-Build Event in Ocean plug-in properties

User folder versus company folder deployment

A plug-in is unique in the module manager by its key
VendorName/PluginName/TechlogVersion/PluginVersion.

This information is set in the code of the plug-in (plug-in information of the main plug-in
class) and the plug-in information has to match the plug-in folder structure:
Extensions/VendorName/PluginName/TechlogVersion/PluginVersion.

See the “Writing the plug-in” for details on how to declare plug-in information.

If two plug-ins with the same key are deployed in the user folder, the Techlog module
manager only shows up one. The behavior is exactly the same if one of the two plug-ins
with same key is in the company folder and in this case the priority is given to user
folder according to Techlog priority levels.

If you want to see the plug-in at company and user levels in the Techlog module
manager, you have to rebuild the plug-in with a different

PluginInformation: :version and deploy the output dll under the corresponding
version folder.

Getting Started 51
Schlumberger Private - Customer Use

Upgrade existing Ocean plug-in to 2016.1

It isn't a prerequisite to uninstall Ocean framework 2015.1 before to install 2016.1
version. You can have several Ocean framework versions installed on your machine.

If you open an Ocean plug-in project created with Ocean template and wizard 2015.1,
you can upgrade this project to 2016.1 clicking right on the project in the Solution
Explorer. Then select in the contextual menu Upgrade Ocean for Techlog project.

Selution Explorer
@S o--ap|l &=
Search Solution Explorer (Ctrl+5) P-

fad Solution 'OceanPluginl' (2 projects)
[I PR

e B
i Build ernal Dependencies
Rebuild ader Files
Clean Oceandctivity.h
View R OceanPIug?nl_Plug?n.h
OceanPluginl_Plugin_precomj
Analyze * Source Files
Project Only ¥ wrce Files
M Upgrade Ocean for Techlog Project OceanActivity.cpp

OceanPluginl_Plugin.cpp

Scopeto This PluginTestl
Mew Solution Explorer View ernal Dependencies
Profile Guided Optimization p fpderfFiles
cource Files
Build Dependencies ¥ lirce Files

Figure 45 Upgrade Ocean for Techlog project

Upgrade window shows up asking you to confirm the project upgrade.

-

Ccean for Techlog 2016.1 2

Do you want to upgrade your projects to the latest installed Ocean for
Techlog Framewark? This will allow you to edit Ocean for Techlog specific
properties in Visual Studio project settings window.

DeceanPlugin140cean Plugin voxproj

Ok || Cancel

Figure 46 Upgrade window

52 Getting Started
Schlumberger Private - Customer Use

Then an information message warns the user about changes that have been applied to
the Ocean for Techlog plug-in project.

Dcean for Techlog

0

Al projects were updated successfully,
The plug-in properties were moved from CurrentPlugin.props into the
plug-in project file, You may wiew and edit these properties in the
project properties window on the Ocean for Techlog settings tab, The
CurrentPlugin.props file was excluded from the project targets list, but
still exists an the disk, Please verify that the operation was completed
cotrectly and the properties walues are correct, then the

CurrertPlugin.props file can be rernowved,

Figure 47 Upgrade information message

=]

As it is mentioned in the dialog window, upgrading your project to Ocean framework
2016.1 allows you to take advantage of Ocean for Techlog properties added to project

properties.
OceanPluginl Property Pages [
Configuration: |Active(Debug] v| Platform: | Active(x64) v| | Configuration Manager... |

- Commaon Properties
4 Configuration Properties
General
Ocean for Techlog
Debugging
WC++ Directories
b C/C++
b Linker
b Manifest Tool
b XML Document Generator
b Browse Information
b Build Events
b Custom Build Step

4| Compilation settings ;

MOC settings
Plug-in settings

[N

Plug-in project name
Plug-in version
VendorName

[N

Version
TechlogSDKHome
QtDir

TLUSERDIR

Techlog version

Compilation settings

-DQT_NO_DEBUG -D_WINDOWS -DUNICODE -DQT_LARGEFILE_SUPPORT -DQT_THREAD_SUPPOR

OceanPluginl
10
cmzlAdmin

D:\OceanForTechlog\SDK\16_1\
D:\OceanForTechlog\SDK\16_1\3rdparty\Qt
C:\Users\ \AppData\R ing\Schi

b

2016.1

ger\Ocean for Techlog 2016.1 Alpha 1\techlog

i Code Analysis

. 3

[0K]| Cancel || Apply

Figure 48 Ocean for Techlog project properties

In this tab you have access to three groups of properties:

1)

2)

3)

Compilation settings: MocUserSettings is a set of definitions which are passed
to MOC.exe at build-time.

Plug-in settings: allow you to mandatory plug-in information values as plug-in
name, version and vendor name. Changing those values will make that the plug-in
output dll is deployed with the corresponding plug-in structure folder at the
post-build time.

Version: this group of properties allows you to handle the Ocean for Techlog
binaries version (TechlogSDKHome) and Qt binaries version (QtDir) with which you
want to build your plug-in. If you create an Ocean project plug-in from 2016.1
template or upgrade an Ocean plug-in project to 2016.1, the default values set to
those properties are the TechlogSDKHome and QTDIR environment variable

Getting Started 53

Schlumberger Private - Customer Use

54

Getting Started

values. But if you change those values through the Ocean for Techlog properties
editor, the new values are only set at the project level and environment variable
values remain unchanged. Through the “Techlog version” you can also control the
Techlog version folder name of the plug-in structure folder. You can also change at
the project setting level the path to the Techlog user folder (TLUSERDIR) where
plug-in structure folders and the plug-in dll are generated at the post-build time.

Schlumberger Private - Customer Use

	OceanForTechlog2016GettingStarted-Cover
	OceanDevGuide_CopyrightPages
	Ocean for Techlog Getting Started Guide 2016.1

